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We propose a two-dimensional lattice-gass2D LGd model where atoms may be in two different states: the
immobile state, in which they jump as usual in the LG model, and the running state, in which the atoms always
jump in the driving direction. The model demonstrates a typical behavior of “traffic-jam” models: the system
splits into domains of immobile atomssjamsd and running atoms. We considered four variants of the 2D LG
model, namely the multilane and truly 2D models, each with “passive” and “active” atomic jumps. The model
has the steady state with a power law distribution of jam sizes characterized by a universal exponent 3/2. The
phase diagram of the model shows that the mobility of the 2D system is lower than the mobility of the 1D
model due to the spreading of jams in the direction transverse to the driving direction.
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I. INTRODUCTION

Driven diffusive systems belong to the simplest models of
nonequilibrium statistical mechanics. These systems are
characterized by a locally conserved density, with a uniform
external field setting up a steady mass current. The systems
of this class have wide application in modeling charge and
mass transport in solids and on crystal surfaces. Recently the
driven diffusive models have been used in tribology, where
the driving force emerges due to motion of one of two sub-
strates, which are separated by a thin atomic layer.

One of the widely used models of this class is the gener-
alized Frenkel-KontorovasFKd model f1g, where a one- or
two-dimensional atomic system is placed into the external
periodic potential, and the atomic currentj in response to the
driving force F is studied by solutions of Langevin motion
equations. The simulations showed that when the force in-
creases, the system goes from the low-mobility regime to the
high-mobility state, where all atoms move with almost maxi-
mum velocity. In the underdamped case, when the external
damping coefficienth in Langevin equations is lower than a
characteristic frequency of atomic vibration at a minimum of
the substrate potential, the model exhibits an interesting phe-
nomenon of phase segregation: During the transition the at-
oms have a tendency to be organized in compact groups of
two different types, one consisting only of slowly moving
atoms which resemble traffic jams, and another of running
atoms moving with the maximum velocityf2g. However, the
FK model is too complicated to be studied in all details. For
this reason it is important to develop a more simple model
which will capture the most important features of the FK
model. Although in this case we lose the possibility of ex-
actly predicting the characteristics of a real physical object, a

different sight on the problem could help us to understand
the behavior of more realistic and complicated models.

Microscopically, the driven diffusive system may be mod-
eled as a lattice gassLGd where particles occupy the sites
with at most one particle per site. The atoms jump stochas-
tically to vacant nearest-neighbor sites, and the external field
biases jumps in the positivex direction. Let us assume that
an atom may jump to the right with probabilitya and to the
left with probability 1−a, where 1

2 ,aø1. Such variant of
the LG model is known as the partially asymmetric exclusion
model sASEPd f3,4g. Driven lattice gases with hard-core re-
pulsion traditionally are used to describe hopping diffusivity
and conductivity in solids. Thea=1 variant of the ASEP
model, called the totally asymmetric exclusion model, has
been solved exactlyf5g. Since the discovery of the exact
solution, driven LG-type models have attracted much interest
se.g., see recent review papersf6,7g and references thereind.
Different variants of the model have been studied, in particu-
lar, in the context of modeling traffic flowf8–11g. In this
context, the one-dimensional variant of the model was intro-
duced in Refs.f12–14g sfor a recent detailed discussion see
Ref. f15gd. Then the model was extended to multilane
f16–20g and two-dimensionalf21,22g variants.

A realistic continuous model such as the FK model men-
tioned above may be described by the LG model, if the ther-
mal energykBT is much lower than the height of the sub-
strate potential«, and the atoms interact via the hard-core
potential. In this case the probability of an atomic jump to
the right at a small applied external forceF is a<s1
+e−aF/Td−1, wherea is the lattice spacing, so that the param-
etera in the LG model plays the role of the driving force.

The underdamped FK model has, however, one more as-
pect connected with the existence of external damping in
Langevin equations. When the damping coefficienth
is large, the atom after the jump stops in the new potential
well. But if h is small, there exists a threshold force*Electronic address: obraun@iop.kiev.ua
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Fb sFb<hÎm«, m being the atomic massd such that at
F.Fb the atom after the jump does not stop but continues to
move until it meets a stopper, e.g., a thermalized atom in
front of itself. To incorporate this feature into the lattice-gas
model, one may assume that an atom may be in two different
states, in the “thermalized” state, in which it jumps as usual
in the LG model, and in the “running” state, in which the
atom always jumps to the right provided the right-hand site
is empty. Thus our model incorporates the features of both
partially and totally asymmetric models. Models with mul-
tiple states belong to cellular automata type models which
are widely used, in particular, in simulation of highway traf-
fic f8–22g.

In our previous paperf2g we have introduced and studied
a one-dimensional variant of the two-state lattice-gas model.
Because it will be used throughout the present work, let us
recall briefly the model and the main results. We considered
a one-dimensionals1Dd lattice of lengthM with periodic
boundary conditions. LetN be the total number of atoms so
that the dimensionless concentration isu=N/M. Then, let us
assume that an atom may be intwo different states:the “im-
mobile” state, in which it jumps as usual in the LG model,
and the “running” state, in which the atom always jumps to
the right provided the right-hand site is empty. The atom can
change its state from the immobile state to the running state
and vice versa: the immobile atom is in the running state
after a jump to the right, and the running atom becomes
immobile after a “collision” with an immobile atom. The
system evolves in time according to the random-sequential
dynamics sthe parallel dynamics leads to similar results
f23gd, i.e., atoms jump independently and randomly accord-
ing to the following rules:sid At each time stept→ t+1, one
chooses a sitei at random;sii d If this site is occupied by an
immobile atom, it jumps to the sitei +1 sif this site is emptyd
with probabilitya or it jumps to the sitei −1 sif the left-hand
site is emptyd with probability 1−a as in the partially asym-
metric exclusion model. After the jump to the left the atom
remains in the immobile state, whileafter the jump to the
right the atom is in the running state; siii d If the atom in the
chosen sitei is in the running state, it jumps to the right
provided the right-hand site is empty, and remains in the
running state. Otherwise, if the sitei +1 is not empty, the
atom at the sitei remains in the running state if the right-
hand site is occupied by the running atom, orbecomes im-
mobile if the site i+1 is occupied by the immobile atom.

This simple model demonstrates a typical behavior of
traffic-jam models, where the atoms behave similarly to ve-
hicles in a one-lane road. At the same time, this model ad-
mits an analytical description. From the very beginning the
system splits into compact domains of immobile and running
atoms. The immobile domainssjamsd are characterized by
the local atomic concentrationus=1. The jams are separated
by running domains characterized by a local concentration
ur ,u. To characterize the system state, we introduce the
dimensionless “mobility”B as the ratio of the number of
running atomsNr to the total number of atomsN, B=Nr /N.
To calculateB analytically, one may suppose that there is
only a single jam of lengthNs in the chain. Because the local
concentration in the jam isus=1, we can apply the following
simple arithmetic:

Ns + Nr = N, Ns + Mr = M , s1d

whereMr is the length of the running domainsRDd. Taking
into account thatNr =Mrur and N=Mu, we obtainNs=Msu
−urd / s1−urd, so that the mobility is equal to

B =
urs1 − ud
s1 − urdu

. s2d

Evidently, Eq.s2d should be valid also for the steady state
with any number of jams providedur corresponds to the
mean atomic concentration in the RD’s.

According to the rules accepted above, the left-most site
of any RD is always empty. Therefore the running domain
grows from its left-hand side at the ratea due to an injection
of new atoms from the left-hand-side neighboring jam. At
the right-hand side of the RD, the atom which occupies the
right-most site of the RD leaves the RD and joins itself to the
neighboring right-hand-side jam. Thus the RD shortens from
the right-hand side at the ratepr, wherepr is the probability
that the right-most site of the RD is occupied. Clearly, in the
steady statepr =a. Neglecting by a possible deviation of the
RD concentration at its right-hand side from the mean value
ur, we may take approximately

pr < ur , s3d

and finally we come to the expression

B <
as1 − ud
s1 − adu

, a , u. s4d

For a.u the jams disappear at all, andB=1 in the steady
state. The expressions4d is in excellent agreement with the
results of numerical simulationf2g.

Another interesting feature of this model is that ata,u
the infinite system has no steady state at all. Indeed, a jam of
length s loses atoms from its right-hand side at the ratea,
and it receives new atoms to the left-hand side at the ratepr.
These two rates are equal to each other in the steady state, so
on averagekṡstdl=0. However, due to the randomness of
joining and losing events, the valuesstd should exhibit ran-
dom walks, i.e., at long timessstd must behave according to
the diffusional equation

kfsstd − sst8dg2l 8 2aut − t8u. s5d

Thus when a jam reaches the sizes=0, it disappears forever,
while the evolution ofsstd to higher values is not restricted in
the infinite system. The distribution of jam sizesPssd con-
tinuously changes with time shifting to larger and larger val-
ues ssee simulation results in Ref.f2gd and approaches the
Gaussian distributionPss,td~exps−s2/4atd ssee the Appen-
dixd. Therefore instead of the name “steady state” it is more
reasonable to use the name “coarsening state.” However, the
mobility of the coarsening state does not change with time
becauseB is determined by the system parameters only ac-
cording to Eq.s4d.

The model described above is similar to the simplest vari-
ant of the Nagel-SchreckenbergsNSd “minimal” model of
real traffic f12–14g with a maximum velocity of 1. The
present model differs from the NS model in two aspects:
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first, we use sequential dynamics contrary to the “parallel
update” of the NS model; and second, the low-velocity state
of our model corresponds to thermalized atoms while in the
NS case it corresponds to immobile carssin cellular au-
tomata traffic-jam models the immobile cars typically cannot
move backward, while in the LG model the backward jumps
are allowedd. Both these features are natural for the system
of atoms in contact with a thermal bath. If we introduce the
atomic flux asj =uv, wherev is the average velocity of the
atomssthis is the standard expression for the flux in LG-type
modelsd, then the main issue of the traffic theory, the funda-
mental diagramsflux vs densityd takes the trivial form
j =us1−ud. However, in the Frenkel-Kontorova type model,
where all atoms in the running domain move simultaneously,
it is more natural to define the “flux” asj =uB, where the
“mobility” B was introduced above. For this definition ofj ,
the fundamental diagram takes the triangular shape,j =u for
u,a and j =s1−uda / s1−ad for u.a, which is similar to
that of real trafficf8–14g.

The aim of the present paper is to extend the driven LG
model to two dimensions. Our main question of interest is
the following: Is the mobility of a 2D model higher or less
than that of the 1D model. Indeed, in the 1D model a single
jam blocks the motion along the chain. Thus, in a 2D model,
where an atom can pass around a jam, one could expect a
higher mobility than in the 1D model. Surprisingly, the an-
swer is just the opposite: the mobility of 2D models in most
cases is lower than that of the 1D model with the same pa-
rameters! Another drastic difference compared to the 1D case
is that the 2D model does have a true steady state which is
characterized by a power law distribution of jam sizes with a
universal exponent 3/2. Moreover, these features of the 2D
two-state LG model are generic: We considered four differ-
ent variants of the model, such as “multilane” and “truly 2D”
models, as well as the models with “passive” and “active”
jumps, and checked that all variants of the model lead to the
same qualitative results.

The paper is organized as follows. Four versions of the
2D generalization of the model, namely the multilane and
truly 2D models with passive and active jumps are intro-
duced in Sec. II. Simulation results together with some ana-
lytical ones are presented in Sec. III. In Sec. IV we present
the attempts to explain the simulation results qualitatively.
Finally, Sec. V concludes the paper.

II. MODEL

We consider a generic example of a two-dimensional
model, namely the most isotropic lattice with triangular sym-
metry ssee Fig. 1d. Every site may be either empty or occu-
pied by an atom. Every atom may be in one of two states: the
“immobile” state or the “running” state. The immobile atom
may jump to one of six neighboring sites, provided this site
is empty. Three of these sites, the forwardsfd, forward up
sfud, and forward downsfdd, are in the direction of the driv-
ing. We assume, analogous to the 1D model described in the
Introduction, that after the jump to one of these three sites,
the atom is in the running state.

Jump probabilities. Let a f, a fu, a fd, ab, abu, andabd be

the probability for an immobile atom to jump to the empty
right-hand site, right-up site, right-down site, left-hand site,
left-up site, and left-down site, respectively, as shown in Fig.
1. An asymmetry in jump rates emerges due to the external
driving force F, because the rate of an activated jump is
proportional to exps−«8 /Td and the barrier is changed due to
the force as«8=«−a8F, where a8= ±a for the forward/
backward jumps anda8= ±a/2 for the fu/ fd/bu/bd jumps.
Therefore we may assume thata f =a0c

2, a fu=a fd=a0c, ab
=a0/c2, and abu=abd=a0/c, wherec,expsaF/2Td. Then,
taking into account the normalization conditiona f +a fu
+a fd+ab+abu+abd=1 and defining the total probability of
the jump in the driving direction asa=a f +a fu+a fd, we can
find the parametersa0 and c and express all jump rates as
functions of a single parametera as shown in Fig. 2.

In analogy to the 1D model described in the Introduction,
let us introduce the following updating rules for the 2D
model: sid At each time stept→ t+1 we choose an atom at
random;sii d if this atom is in an immobile state, it jumps to
one of six neighboring sites with a corresponding probability
provided the chosen site is empty. After the jump to one of
three backward directionssin the b, bu, or bd directiond the
atom remains in the immobile state, while after the jump to
the direction of drivingsthe f, fu, or fd directiond the atom is
in the running state;siii d if the chosen atom is in the running
state, its behavior is different for the following four variants
of the model.

Multilane and truly 2D models. The difference between
the multilane and truly 2D models is that in the multilane
model, similar to the 1D model, the running atom jumps to
the rightsin the f direction of Fig. 1d provided the site ahead
of the running atom is empty, while in the truly 2D model the
running atom remembers the direction of the previous jump
san analog of inertia effect in Newtonian dynamicsd and con-
tinues to jump in the same directionsi.e., in the f, fu, or fd
directiond. After the jump, the atom remains in the running
state. If the site, to which the running atom has to jump, is

FIG. 1. Triangular lattice.
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occupied by a running atom, both atoms remain in the run-
ning statesin the truly 2D model we assume in addition that
these two running atoms exchange by their jumping direc-
tions, similar to momentum exchange in Newtonian dynam-
icsd. However, if the site, to which the running atom has to
jump, is occupied by an immobile atom, the behavior is dif-
ferent for two more variants of the model to be described
below.

Passive and active jumps. In the model with passive
jumps, the running atom becomes immobile if the site, to
which the running atom has to jump, is occupied by an im-
mobile atom analogous to the 1D model. On the other hand,
in the model with active jumps the running atom becomes
immobile only if all three sitessf, fu, and fd in Fig. 1d are
occupied by immobile atoms. If one of these sites is empty,
the running atom jumps to this sitesin the case of two empty
sites the jumping site is chosen randomlyd.

Finally, we use periodic boundary conditions in both di-
rections.

III. RESULTS

A. Steady-state and jam sizes distribution

If one starts with a random initial configuration, the sys-
tem quickly reaches a steady state with a constant mobilityB
as shown in Fig. 3snotice thatB is lower than the mobility of
the 1D model for the same values ofa and u, and thatB
grows as the lattice size increases in the vertical direction,
reaching a plateau atMy*32d. Contrary to the one-
dimensional model, however, now the system reaches a truly
steady state, the distribution of immobile island sizesPssd
does not change with time as demonstrated in Fig. 4.

Moreover, the distributionPssd is not Gaussian as in the
1D model, but follows the power law: forall variants of the
2D model as well as forall checked sets of the parametersa

andu the distributionPssd may be well fitted by the power
law Pssd~s−3/2. A typical example is presented in Fig. 5ssee
also Ref.f26gd.

The power-law distribution may be explained analytically
if we consider the statistics of coalescence and splitting of
immobile islands. LetPtssd be the distribution of immobile
islands at time momentt, Rsk+s,kd be the ratesper one time
unitd of splitting of the island of sizek+s into two smaller
islandsk ands, andTsk+s,kd be the rate of coalescence of

FIG. 2. Probabilities of the jump to the righta f, right-up/down
a fu=a fd, to the leftab, and left-up/downabu=abd as functions of
a.

FIG. 3. The mobilityB as a function of time for the multilane
model with active jumps for different lattice sizesMy in the vertical
direction. The parameters area=0.75,u=0.8, andMx=1024.

FIG. 4. sColor onlined Histogram of size distribution of immo-
bile islands for the multilane model with active jumps at different
times:sad t=103, sbd t=104, andscd t=105 fdashed red curve shows
the fit Pssd=63104 s−3/2g. The parameters area=0.75,u=0.8, and
Mx=My=1024.
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two islandsk and s into one island of sizek+s. Clearly,
Rsk+s,sd=Rsk+s,kd andTsk+s,sd=Tsk+s,kd.

Now we can write the master equation as follows:

DPt+1ssd ; Pt+1ssd − Ptssd = o
k=1

`

Ptsk + sdRsk + s,sd

− Ptssdo
k=1

s−1

Rss,kd + o
k=1

s−1

Tss,kdPtskdPtss− kd

− Ptssdo
k=1

`

Tss+ k,kdPtskd. s6d

The first term in the right-hand side of Eq.s6d describes the
increase of the number of islands of sizes due to splitting of
higher-size islands, the second term describes the decrease of
Ptssd due to splitting of thes island in two smaller parts, the
third term describes the growing of the number ofs islands
due to coalescence of two smaller islandsk ands−k, and the
last term describes the decrease of the number ofs islands
due to their coalescence with other islands.

The steady state must satisfy the equationDPtssd=0. It is
natural to suppose that the rate of coalescence does not de-
pend on the sizes of colliding islands,Tss,kd=T0 for all s and
k. The splitting rateRss,kd, however, may depend on the
shape of the splitting island and thus it will depend on both
argumentss andk. To simplify consideration, let us assume
that Rss,kd depends on the size of the island only,Rss,kd
<Rssd. In this caseRssd should behave asRssd~ ss−1d−1 for
s@1. Indeed, substitutingTss,kd=T0 and Rss,kd=Rssd into
Eq. s6d for the steady state, we obtain

Pssdfss− 1dRssd + T0g = o
k=s+1

`

PskdRskd + T0o
k=1

s−1

PskdPss− kd.

s7d

Equations7d can be rewritten in the form

Rssd = fT0assd + bssdg/ss− 1d, s8d

where

assd = − 1 +o
k=1

s−1

PskdPss− kd/Pssd s9d

and

bssd = o
k=s+1

`

RskdPskd/Pssd. s10d

Therefore the splitting rate has to have the form

Rssd = R0/ss− 1d for s@ 1 s11d

provided the functionassd has a finite value at thes→`
limit, 0 , lims→` assd,`. Then, substituting Eq.s11d into
Eq. s7d, one can see that the latter has a solution in the
s@1 limit only for the power-law distribution of island sizes,

Pssd = z−1snds−n, s12d

wherezsnd is the Riemann zeta function.
The substitution of the distributions12d into Eq.s9d yields

anssd = − 1 +z−1sndsno
k=1

s−1

k−nss− kd−n. s13d

Numerical investigation of this function suggests that it has a
nonzero limit ats→` for one value of the exponentn only,
namelyn<3/2, as demonstrated in Fig. 6. The same result
follows from analytical consideration of the functions13d
with the help of Maple software, which shows that such a
limit exists for n=3/2 only, anda3/2s`d=1. Taking also into
account the simulation results such as presented in Fig. 5, we
conclude that the power-law distributions12d with the expo-
nent n=3/2 is thetruly steady-state solution of the model
under study.

Finally, the self-consistent solution of the steady-state dis-
tribution is achieved with the parametersR0=CT0, where
C<3 is a numerical constant.

B. Shape of jams

Qualitatively, the dependence of the mobilityB on the
model parametersa andu is similar to that of the 1D model:
B grows whena increases or whenu decreases and it is

FIG. 5. HistogramPssd for the truly 2D model with active
jumps. The parameters area=0.95, u=0.8, Mx=My=512, t=103,
B<0.64.

FIG. 6. anssd as a function ofn for different s.
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determined byur through the expressions2d, although the
simple expressionss3d and s4d are not valid for the 2D
model. At a small enough concentrationu,uc, where the
critical valueuc depends ona as well as on the variant of the
model, all atoms are in the running state andB=1. Whenu
.uc and the concentration increases, more and more immo-
bile islands emerge in the sea of running atoms. As far as
B.0.5, these islands are isolated, and their shape depends
on the “forcing”a: the immobile islands are elongated in the

y direction at smalla as shown in Fig. 7sad, approximately
circular at intermediate values ofa fsee Fig. 7sbdg, and elon-
gated in thex direction salong the drivingd at largea fFig.
7scdg.

An average size of jams depends on the system size be-
causeksl,edssPssd~ us1/2uN~ sMxMyd1/2. Clearly, the maxi-
mum sizesm of the immobile island is determined by the
system size too. Indeed, in a finite system the total number of
immobile atoms may be written asNs~ Ps1d+2Ps2d

FIG. 7. Shape of jams. Snapshot configurations att=105 of the multilane model with active jumpsslattice 5123512d for different model
parameters:sad a=0.55, u=0.5, B<0.8; sbd a=0.75, u=0.8, B<0.6; andscd a=0.95, u=0.9, B<0.7. Immobile atoms are in black and
running atoms in grey.
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+3Ps3d+¯ +smPssmd. If we suppose that there is only one
island with the maximum size, this relationship may be re-
written asNs=sm

1/2os=1
sm s−1/2, and the latter yieldssm<0.5Ns

for Ns@1.
As u increases, the concentration of immobile islands

grows, and at some critical concentrationupsad, which cor-
responds to the percolation threshold for the given variant of
the model, the jams begin to overlap. After that, the immo-
bile atoms are arranged either intoy-oriented stripsffor
smaller values ofa, see Figs. 8sad and 9sadg or, at larger
values ofa, they create a two-dimensional net as shown in
Figs. 8sbd and 9sbd.

C. Comparison of different variants of the model

Passive and active jumps:The comparison of the mobility
of models with passive and active jumps is presented in Fig.
10. A trivial result is that active jumps lead to a higher mo-
bility. One can see also that the effect is stronger for the truly
2D model.

Multilane and truly 2D models:Let us also compare the
multilane and truly 2D modelsssee Fig. 10d. A surprising
result is that for all cases, except the one with active jumps at
low driving a=0.55, the mobility of the truly 2D model is
smaller than that of the multilane model.

2D and 1D models:Finally, let us compare 2D variants of
the traffic-jam model with the simple 1D model described in
the Introduction. As seen from Fig. 11, the mobility of the
1D model is higher than that of 2D variants of the model for
almost all model parameters.

Figure 12 presents the phase diagram of four variants of
the model. The curves separate the runningsB=1d and jam-
ming sB,1d states.

IV. DISCUSSION

To explain qualitatively the variation ofBsud for different
variants of the 2D model, let us look at some typical con-
figurations below the percolation thresholdswhen B.0.5,
see Fig. 13d and above the percolationswhen B,0.5, see
Fig. 14d. These configurations were calculated for the lattice
5123512 andt=105; the figures show a zoomed region of
size 96396 extracted from a larger configuration.

From a general point of view, the mobilityB of the 2D
model should be higher than that of the 1D model because
the atoms that collide with a jam may not stop but instead go
around the jam. At the same time, however,B may be
strongly decreased compared with the 1D model due to the
spreading of jams in they direction. The mobilityB can be
expressed through the concentration of the running atomsur
with the help of Eq.s2d. Using the simulation data, we can
plot ur as a function ofu for different values of the parameter
a ssee Fig. 15d. In what follows we will try to give a crude
qualitative description of theursa ,ud dependence. We will
do this separately for the case of high mobility when the
immobile islands do not overlap, and the case of low mobil-
ity, i.e., above the percolation of the islands.

The case of high mobilitysB.0.5d. In this simpler case
the immobile islands are separated from each other as can be

seen from Fig. 13. Letassd be an average rate of atomic
jumps from the right-hand-side boundary of the immobile
island of sizes, provided the corresponding site is not occu-
pied by a running atom. We haveassd<a;a f +a fu+a fd for
s,1 as well as for immobile islands strongly elongated in
the x direction, andassd<a f +0.5sa fu+a fdd for s@1 or for
islands strongly elongated in they direction se.g., for the

FIG. 8. Snapshot configurations att=105 of the multilane model
with passive jumps for:sad a=0.55, u=0.7, B<0.37, andsbd a
=0.95,u=0.9, B<0.35. Immobile atoms are in black and running
atoms in grey.
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case of a flat vertical boundaryd. The jump’s rate averaged
over the whole system may be defined as

ā =
Ps1das1d + ¯ + Pssmdassmd

Ps1d + ¯ + Pssmd
. s14d

If we assume that the dependenceassd may be described
by the following interpolation formula:

assd = a f + 0.5sa fu + a fdds1 + s−jd,

where 0,j,` is a parameter, thenā=a f +f1+Gsjdga fu,
where Gs0d=1, Gs1d=zs5/2d /zs3/2d<0.514, Gs2d
=zs7/2d /zs3/2d<0.431, andGs`d=1/zs3/2d<0.383. Be-
cause these values do not depend essentially on the exponent
j providedjù1, we may take in what followsj=2 so that
ā<a f +1.43a fu.

In the 1D model described in the Introduction, the site
ahead of the right-most atom of the jam was always empty,
thus the jam is shortened from its right-hand side at the rate
q=a. This is not true anymore for the 2D model: as can be
seen from Fig. 13, some sites ahead of the right-hand bound-
ary of the 2D jams are occupied by running atoms with some
nonzero probabilityu8. Thus in the 2D model the jam will
shorten from its right-hand boundary at the rateq=ās1
−u8d. Then, letl be a linear size of the immobile island in the
y direction from its left-hand sidesi.e., l is the average jam’s
“cross section” for the incoming running atomsd, and l f be
thesfractald length of the island boundary from its right-hand
side. The rate of growth of the jamsfrom its left-hand-side
boundaryd is url while the rate of its decreasesfrom the right-
hand-side boundaryd is qlf. In the steady state these two rates
must be equal to each other on the average. Thus we come to

FIG. 9. Snapshot configurations att=105 of the truly 2D model
with active jumps for:sad a=0.55, u=0.7, B<0.57, andsbd a
=0.95,u=0.9, B<0.26. Immobile atoms are in black and running
atoms in grey.

FIG. 10. The mobilityB versus the concentrationu for sad mul-
tilane andsbd truly 2D models with passive jumpssdotted curves
and open symbolsd and active jumpsssolid curves and symbolsd for
three values of the driving:a=0.55 sup trianglesd, a=0.75 sdia-
mondsd, and a=0.95 sdown trianglesd. Lattice size is 2563256,
and averaging is over 104 MC steps per atom.
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the expressionur =āQ, whereQ=s1−u8dkl fl / kll.
The valueā is shown in Fig. 15 by a dashed line. One can

see that the approach presented above describes the simula-
tion data for the multilane model with passive jumps atu
*uc if we take Q<0.91–0.96. Although this value is rea-
sonable, unfortunately we were not able to findQ analyti-
cally. A lower mobility of the truly 2D model compared with
the multilane one could be explained by a lower value of the
ratio kl fl / kll. On the other hand, a higher mobility of the
models with active jumps compared with those with passive
jumps can be easily explained by the decrease of the cross
section: In the model with active jumps the parameterQ
should be defined asQ=s1−u8dkl fl / kl −2l because the “ex-

treme” up/down running atoms colliding with the jam can
now overcome it. As can be seen from Fig. 16, in the models
with active jumps the concentration of running atoms in-
creases by 1.1–1.3 times.

FIG. 11. Bsud for the multilane modelsopen symbolsd and truly
2D model ssolid symbolsd sboth models with active jumpsd com-
pared with the mobility of the 1D model for three values of driving:
a=0.55sup triangles and dash curvesd, a=0.75sdiamonds and dot-
ted curvesd, anda=0.95 sdown triangles and solid curvesd. Lattice
size is 2563256, and averaging is over 104 MC steps per atom.

FIG. 12. Phase diagram in thesu ,ad plane. The curves separate
the regions whereB=1 smoving phase, above the curvesd and B
,1 sjamming phase, below the curvesd. Lattice size is 2563256,
and simulation time is 105 MC steps per atom.

FIG. 13. Snapshot configuration of the truly 2D model with
passive jumps fora=0.75 andu=0.6 sB<0.71d. Immobile atoms
are in black and running atoms in grey.

FIG. 14. Snapshot configuration of the truly 2D model with
passive jumps fora=0.75 andu=0.8 sB<0.27d. Immobile atoms
are in black and running atoms in grey.
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The valueur determined above just defines the critical
valueuc which separates the running and jamming states in
the phase diagram of Fig. 12. Above this concentration,
u.uc, we may writeNs<su−ucdM <2sm. In this approach,
however, the value ofur does not depend onu while the
simulation results of Fig. 15 show a slow increase ofur with
u in the regionuc,u,up. To explain this effect, one may
suppose thatur =āssmdQssmd, where āssmd decreases but
Qssmd increases whenu grows, and the latter effect domi-
nates. Besides, we also have to take into account the fact that
since immobile islands are not compact, there are small sub-
islands of running atoms inside the immobile islands as can
be seen, e.g., in the configuration of Fig. 13. The concentra-
tion ur in these subislands is larger than that in the “main
sea” of running atoms. Thus the average valuekurl is larger
thanur in the “sea,” andkurl should increase withu due to
the growing of immobile islands.

The case of low mobilitysB,0.5d. As mentioned above,
the overlapping of immobile islands begins whensm/M =g
,0.5 srecall M =MxMyd, where the percolation thresholdg
depends on the shape of islands in a general case. Above the
percolation, the running atoms are organized into isolated
islands as can be seen from Fig. 14. At higher concentrations,
u.up, the value ofur begins to decrease asu increases and,
because the average radius of the running islands decreases,
ā has to decrease too. Using the relationshipsNs/M =su
−urd / s1−urd and sm<0.5Ns, we obtain the result that the
threshold valueupsad is coupled with the concentration of
the running atomsur by the relationship 2g=sup−urd / s1
−urd. If we define the value ofup as that whenur reaches its
maximum, from the simulation data for the multilane model
with passive jumps we find thatg<0.25 ata=0.55 swhen
the island arey shapedd, g<0.2 ata=0.75swhen the islands
are approximately circulard, andg&0.1 ata=0.95swhen the
island arex elongatedd. These results look reasonable if we
assume that the percolation in the driving direction is impor-
tant only.

V. CONCLUSION

We have studied numerically and, whenever possible,
analytically a two-dimensional two-state lattice-gas model
which demonstrates a typical behavior of traffic jams, i.e.,
the steady state of the system is splitting into domains of
immobile atomssjamsd and running atoms. Four variants of
the 2D model, namely the multilane and truly 2D models
with passive and active atomic jumps, show a similar behav-
ior. Contrary to the 1D variant of the model, the 2D model is
characterized by a truly steady state with a power law distri-
bution of jam sizes characterized by a universal exponent
3/2. The phase diagram of the model shows that the mobility
of the 2D system is lower than the mobility of the 1D model
due to a branching behavior of jams.

The lattice-gas model studied in the present work should
describe qualitatively the locked-to-sliding transition in the
driven underdamped Frenkel-Kontorova model. Such a tran-
sition, according to the results of our study, should proceed
through an inhomogeneous steady state, where the system

FIG. 15. ur vs u for three values ofa sa=0.55, 0.75, and 0.95d
extracted from the simulation data with the help of Eq.s2d. Tri-
angles are for the multilane model; diamonds are for the truly 2D
model; open symbols are for the models with passive jumps and
solid symbols for the models with active jumps. The value ofā is
shown by a dashed line.

FIG. 16. The ratio of the concentrationur for the model with
active jumps to that with passive jumps as a function ofu for three
values ofa sa=0.55, 0.75, and 0.95d. Open symbols are for the
multilane model and solid symbols for the truly 2D model.
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splits into immobile and running domains. Preliminary re-
sults show that this indeed is the case at least for some range
of model parametersf24,25,27g. Therefore the results of the
present work may find applications in problems of conduc-
tivity of 2D systems or behavior of tribology systems as was
mentioned in the Introduction. Besides, the model studied in
the present work may be used to describe granular flow, e.g.,
grain, corn, or pills flow on inclined hopper surfacesf28g or
in a vertical pipe. Finally, the two-state LG model may be
useful in investigation of general aspects of “intelligent
transport systems” such as multilane traffic, can and bottle
transport systems in factories, baggage flow on conveyor
belts, data exchange in computer networks, and even emer-
gency escaping in case of crowds of people.
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APPENDIX

The diffusion equation]Pss,td /]t=]2Pss,td /]s2 with the
absorbing boundary conditionPs0,td=0 at s=0 has the so-
lution

Pss,td =E
0

`

askdsinsksdexps− k2tddk,

where askd is determined by the initial distribution,askd
=s2/pde0

` sinsksdPss,0dds. For t@1 ands@1 this distribu-
tion approaches the Gaussian one. For example, for the ini-
tial distributionPss,0d=sexps−s2d which has a maximum at
s,1, the exact solution of the diffusion equation is

Pss,td =
sexpf− s2/s4t + 1dg

s4t + 1d3/2 .
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