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Two-dimensional two-state lattice-gas model
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We propose a two-dimensional lattice-g2® LG) model where atoms may be in two different states: the
immobile state, in which they jump as usual in the LG model, and the running state, in which the atoms always
jump in the driving direction. The model demonstrates a typical behavior of “traffic-jam” models: the system
splits into domains of immobile atonm{gamsg and running atoms. We considered four variants of the 2D LG
model, namely the multilane and truly 2D models, each with “passive” and “active” atomic jumps. The model
has the steady state with a power law distribution of jam sizes characterized by a universal exponent 3/2. The
phase diagram of the model shows that the mobility of the 2D system is lower than the mobility of the 1D
model due to the spreading of jams in the direction transverse to the driving direction.
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[. INTRODUCTION different sight on the problem could help us to understand
) - _ the behavior of more realistic and complicated models.
Driven diffusive systems belong to the simplest models of  \jicroscopically, the driven diffusive system may be mod-
nonethpnum statistical mechanics. Th.ese _systemg argled as a lattice gad.G) where particles occupy the sites
character!zed by a locally conserved density, with a uniformyjith at most one particle per site. The atoms jump stochas-
external field setting up a steady mass current. The systemiga)ly to vacant nearest-neighbor sites, and the external field
of this class have wide application in modeling charge andhjases jumps in the positive direction. Let us assume that
mass transport in solids and on crystal surfaces. Recently thg, stom may jump to the right with probability and to the
driven diffusive models have been used in tribology, wher : iy 1 — 1o < i
the driving force emerges due to motion of one of two sube—kaft with proba_blhty Lo, where2<.a 1. Such variant Of-
| g ; the LG model is known as the partially asymmetric exclusion
strates, which are separated by a thin atomic layer. model (ASEP) [3,4]. Driven lattice gases with hard-core re-
_One of the widely used models of this class is the generyision traditionally are used to describe hopping diffusivity
alized Frenkel-KontorovdFK) model[1], where a one- or 504 conductivity in solids. Ther=1 variant of the ASEP
two-dimensional atomic system is placed into the externap,qqe| called the totally asymmetric exclusion model, has
periodic potential, and the atomic currgrin response to the  paen solved exactly5]. Since the discovery of the exact
driving force F is studied by solutions of Langevin motion g tion, driven LG-type models have attracted much interest
equations. The simulations showed that when the force iNe.g., see recent review papé6s7] and references therdin
creases, the system goes from the low-mobility regime 1o thg)igterent variants of the model have been studied, in particu-
h|gh-mob|I|t_y state, where all atoms move with almost maxi-|jar in the context of modeling traffic flof8—11. In this
mum velocity. In the underdamped case, when the externalyniext, the one-dimensional variant of the model was intro-
damping coefficient; in Langevin equations is lower than a q,ceqd in Refs[12-14 (for a recent detailed discussion see
characteristic frequency of atomic vibration at a minimum of ¢ [15]). Then the model was extended to multilane
the substrate potential, the model exhibits an interesting ph 16-20 and two-dimensiondl21,27 variants.
nomenon of phase segregation: During the transition the at- A (eglistic continuous model such as the FK model men-

oms have a tendency to be organized in compact groups @ned above may be described by the LG model, if the ther-
two different types, one consisting only of slowly moving ma energyksT is much lower than the height of the sub-

atoms which resemble traffic jams, and another of runningate potentiak, and the atoms interact via the hard-core
atoms moving with the maximum velocifg]. However, the  notential. In this case the probability of an atomic jump to
FK model is too complicated to be studied in all details. Fory,q right at a small applied external forde is a=~(1

this reason it is important to develop a more simple model,
which will capture the most important features of the FK
model. Although in this case we lose the possibility of ex-
actly predicting the characteristics of a real physical object, ?)e

e @M=L wherea is the lattice spacing, so that the param-
etera in the LG model plays the role of the driving force.
The underdamped FK model has, however, one more as-
ct connected with the existence of external damping in
Langevin equations. When the damping coefficient
is large, the atom after the jump stops in the new potential
*Electronic address: obraun@iop.kiev.ua well. But if # is small, there exists a threshold force
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— . .
F, (F,=mnVyme, m being the atomic magssuch that at Ng+N, =N, Ng+M,=M, (1)
F > F,, the atom after the jump does not stop but continues to i ) ] )
move until it meets a stopper, e.g., a thermalized atom ifvhereM is the length of the running domaiRD). Taking
front of itself. To incorporate this feature into the lattice-gasinto account thatN,=M, 6, and N=M#6, we obtainNs=M(¢
model, one may assume that an atom may be in two different 6;)/(1-6;), so that the mobility is equal to
states, in the “thermalized” state, in which it jumps as usual
in the LG model, and in the “running” state, in which the Bzw'
atom always jumps to the right provided the right-hand site 1-6,)0

is empty. Thus our model incorporates the features of both. . .
partially and totally asymmetric models. Models with mul- rl]:'wdently, Eq.(2) should be valid also for the steady state

tiple states belong to cellular automata type models which{!/th @ny number of jams provided, corresponds to the
are widely used, in particular, in simulation of highway traf- M&an atomic concentration in the RD’s. ,
fic [8—22]. According to the rules accepted above, the left-most site
In our previous papei2] we have introduced and studied Of any RD is always empty. Therefore the running domain
a one-dimensional variant of the two-state lattice-gas mode@rows from its left-hand side at the raedue to an injection
Because it will be used throughout the present work, let u®f new atoms from the left-hand-side neighboring jam. At
recall briefly the model and the main results. We consideredhe right-hand side of the RD, the atom which occupies the
a one-dimensiona(1D) lattice of lengthM with periodic  right-most site of the RD leaves the RD and joins itself to the
boundary conditions. LeM be the total number of atoms so neighboring right-hand-side jam. Thus the RD shortens from
that the dimensionless concentratiordisN/M. Then, let us  the right-hand side at the rafg, wherep, is the probability
assume that an atom may betimo different statesthe “im-  that the right-most site of the RD is occupied. Clearly, in the
mobile” state, in which it jumps as usual in the LG model, steady stat,=«. Neglecting by a possible deviation of the
and the “running” state, in which the atom always jumps toRD concentration at its right-hand side from the mean value
the right provided the right-hand site is empty. The atom carf;, we may take approximately
change its state from the immobile state to the running state _
and vice versa: the immobile atom is in the running state P = 0, (3)
after a jump to the right, and the running atom becomesnd finally we come to the expression
immobile after a “collision” with an immobile atom. The
system evolves in time according to the random-sequential B~ al-06) a< . (4)
dynamics (the parallel dynamics leads to similar results 1-a)6

[23]), i.e., atoms jump independently and randomly accord- . . .
ing to the following rules{i) At each time step—t+1, one For o> ¢ the jams disappear at all, aiF1 in the steady

chooses a sité at randomyii) If this site is occupied by an state. The expressioi@) is in excellent agreement with the

; . S > e results of numerical simulatiof2].
'”?m"b"e atpm, "J“F“PS to the Sm&l. (.'f th|§ site is empty Another interesting feature of this model is thataat 0
with probability « or it jumps to the sité—1 (if the left-hand oo .
. . o . . the infinite system has no steady state at all. Indeed, a jam of
site is empty with probability 1 -« as in the partially asym-

metric exclusion model. After the jump to the left the atom Iengt_hs Ios_es atoms from its right-hand 5|d_e at the rate
C . : . . and it receives new atoms to the left-hand side at thepate
remains in the immobile state, whikgfter the jump to the

) . i . These two rates are equal to each other in the steady state, so
right the atom is in the running statéii) If the atom in the N

. . L . on average(s(t))=0. However, due to the randomness of
chosen site is in the running state, it jumps to the right

provided the right-hand site is empty, and remains in thd0ining and I'osing events., the valiset) should exhibit ran-
running state. Otherwise, if the site-1 is not empty, the dom walks, i.e., at long times(t) must behave according to

atom at the sité remains in the running state if the right- the diffusional equation
hand site is occupied by the running atom,b@comes im- ([s(t) = s(t")]?) = 2alt - t'|. (5)
mobile if the site +1 is occupied by the immobile atom

This simple model demonstrates a typical behavior offhus when a jam reaches the s&ze0, it disappears forever,
traffic-jam models, where the atoms behave similarly to veWhile the evolution of(t) to higher values is not restricted in
hicles in a one-lane road. At the same time, this model adthe infinite system. The distribution of jam sizBés) con-
mits an analytical description. From the very beginning thetinuously changes with time shifting to larger and larger val-
system splits into compact domains of immobile and runninglies (see simulation results in Reff2]) and approaches the
atoms. The immobile domaingams are characterized by Gaussian distributiof(s, t) < exp(-s?/4at) (see the Appen-
the local atomic concentratiofy=1. The jams are separated dix). Therefore instead of the name “steady state” it is more
by running domains characterized by a local concentratiomeasonable to use the name “coarsening state.” However, the
6, < 6. To characterize the system state, we introduce thenobility of the coarsening state does not change with time
dimensionless “mobility”"B as the ratio of the number of becauseB is determined by the system parameters only ac-
running atoms\, to the total number of atom, B=N,/N. cording to Eq.(4).
To calculateB analytically, one may suppose that there is The model described above is similar to the simplest vari-
only a single jam of lengtiNg in the chain. Because the local ant of the Nagel-Schreckenbe(dlS) “minimal” model of
concentration in the jam ig;=1, we can apply the following real traffic [12-14] with a maximum velocity of 1. The
simple arithmetic: present model differs from the NS model in two aspects:

(2)
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first, we use sequential dynamics contrary to the “parallel T ' T ' Tt
update” of the NS model; and second, the low-velocity state driving direction

of our model corresponds to thermalized atoms while in the e} ‘o) e} e} o
NS case it corresponds to immobile cdis cellular au- - .
tomata traffic-jam models the immobile cars typically cannot bu fu
move backward, while in the LG model the backward jumps 1| 10) o .
are allowed. Both these features are natural for the system
of atoms in contact with a thermal bath. If we introduce the
atomic flux asj=6v, wherev is the average velocity of the >, oL e} b Oe O f O -
atoms(this is the standard expression for the flux in LG-type
models, then the main issue of the traffic theory, the funda-

mental diagram(flux vs density takes the trivial form e} o
j=6(1-6). However, in the Frenkel-Kontorova type model, 1 bd fd 7
where all atoms in the running domain move simultaneously, | )
it is more natural to define the “flux” ag=6B, where the 0 O '®) O O
“mobility” B was introduced above. For this definition jof 2k -

the fundamental diagram takes the triangular shapé,for
0<a andj=(1-60)al/(l-a) for 6>, which is similar to

) -2 -1 0 1 2
that of real traffic[8—14). X
The aim of the present paper is to extend the driven LG
model to two dimensions. Our main question of interest is FIG. 1. Triangular lattice.

the following: Is the mobility of a 2D model higher or less
than that of the 1D model. Indeed, in the 1D model a singlehe probability for an immobile atom to jump to the empty
jam blocks the motion along the chain. Thus, in a 2D modelyight-hand site, right-up site, right-down site, left-hand site,
where an atom can pass around a jam, one could expectlgft-up site, and left-down site, respectively, as shown in Fig.
higher mobility than in the 1D model. Surprisingly, the an- 1. An asymmetry in jump rates emerges due to the external
swer is just the opposite: the mobility of 2D models in mostdriving force F, because the rate of an activated jump is
cases is lower than that of the 1D model with the same paproportional to exp-¢'/T) and the barrier is changed due to
rameters! Another drastic difference compared to the 1D casge force ase’=s-a’F, where a’=+a for the forward/
is that the 2D model does have a true steady state which isackward jumps and’ = +a/2 for the fu/fd/bu/bd jumps.
characterized by a power law distribution of jam sizes with aTherefore we may assume that= agC?, as,= asg=aoC, ay
universal exponent 3/2. Moreover, these features of the 212 oy/c?, and ay,,= a,q= ag/c, Wherec~ exp(aF/2T). Then,
two-state LG model are generic: We considered four differ-taking into account the normalization conditiom + ay,
ent variants of the model, such as “multilane” and “truly 2D” +agq+ o+ ap+ ag=1 and defining the total probability of
models, as well as the models with “passive” and “active’the jump in the driving direction as=a;+ as,+ a4, We can
jumps, and checked that all variants of the model lead to th@nd the parameters, and c and express all jump rates as
same qualitative results. functions of a single parameteras shown in Fig. 2.

The paper is organized as follows. Four versions of the |n analogy to the 1D model described in the Introduction,
2D generalization of the model, namely the multilane andet us introduce the following updating rules for the 2D

truly 2D models with passive and active jumps are intro-model: (i) At each time stei—t+1 we choose an atom at
duced in Sec. Il. Simulation results together with some anarandom;(ii) if this atom is in an immobile state, it jumps to

lytical ones are presented in Sec. lll. In Sec. IV we presenpne of six neighboring sites with a corresponding probability
the attempts to explain the simulation results qualitativelyprovided the chosen site is empty. After the jump to one of
Finally, Sec. V concludes the paper. three backward directiongn the b, bu, or bd direction the
atom remains in the immobile state, while after the jump to
Il. MODEL the direction of drivingthef, fu, or fd direction) the atom is

in the running stateiii ) if the chosen atom is in the running
We consider a generic example of a two-dimensionaktate, its behavior is different for the following four variants
model, namely the most isotropic lattice with triangular sym-of the model.
metry (see Fig. 1 Every site may be either empty or occu-  Multilane and truly 2D modelsThe difference between
pied by an atom. Every atom may be in one of two states: théhe multilane and truly 2D models is that in the multilane
“immobile” state or the “running” state. The immobile atom model, similar to the 1D model, the running atom jumps to
may jump to one of six neighboring sites, provided this sitethe right(in the f direction of Fig. 2 provided the site ahead
is empty. Three of these sites, the forwafg, forward up  of the running atom is empty, while in the truly 2D model the
(fu), and forward dowrifd), are in the direction of the driv- running atom remembers the direction of the previous jump
ing. We assume, analogous to the 1D model described in th@n analog of inertia effect in Newtonian dynamiesd con-
Introduction, that after the jump to one of these three sitestinues to jump in the same directigne., in thef, fu, or fd
the atom is in the running state. direction. After the jump, the atom remains in the running
Jump probabilities Let «, sy, atq, an, ap, andapg be  state. If the site, to which the running atom has to jump, is
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FIG. 3. The mobilityB as a function of time for the multilane
PN I T T TP T TR B e model with active jumps for different lattice siz®, in the vertical

0.50 055 0.60 065 070 0.75 0.80 085 090 095 1.00 direction. The parameters avs=0.75, §=0.8, andM,=1024.
o

and 6 the distributionP(s) may be well fitted by the power
law P(s) =532 A typical example is presented in Fig(&ee
also Ref.[26]).

The power-law distribution may be explained analytically
i , . if we consider the statistics of coalescence and splitting of
occupied by a running atom, both atoms remain in the runj,mopile islands. LeP,(s) be the distribution of immobile

Pr']ng sttate(m the_ trulyt2D modehl we asbsu?;]e_m_ add|_t|ondthat islands at time momertt R(k+s,k) be the ratdper one time
tioerfse S‘i"r’r‘]’“;‘;”zg'rrfo; grr]‘:jrﬁgc"’;:;%ee{n N‘g;\/{gmgg‘g n';ifpnit) of splitting of the island of siz&+s into two smaller
. ' . . hang i y islandsk ands, andT(k+s,k) be the rate of coalescence of
ics). However, if the site, to which the running atom has to

FIG. 2. Probabilities of the jump to the right, right-up/down
as = agq, 10 the leftay, and left-up/downay,,= aygq as functions of
.

jump, is occupied by an immobile atom, the behavior is dif- 3
ferent for two more variants of the model to be described
below. 10°

Passive and active jumpdn the model with passive g . ) =10’
jumps, the running atom becomes immobile if the site, to =
which the running atom has to jump, is occupied by an im-
mobile atom analogous to the 1D model. On the other hand
in the model with active jumps the running atom becomes
immobile only if all three sitegf, fu, andfd in Fig. 1) are
occupied by immobile atoms. If one of these sites is empty,
the running atom jumps to this sit@ the case of two empty
sites the jumping site is chosen randojnly

Finally, we use periodic boundary conditions in both di-
rections.

0 500 1000 1500

N P(s)

Il. RESULTS
A. Steady-state and jam sizes distribution

If one starts with a random initial configuration, the sys-
tem quickly reaches a steady state with a constant molility
as shown in Fig. 3notice thatB is lower than the mobility of
the 1D model for the same values afand 6, and thatB
grows as the lattice size increases in the vertical direction,

N P(s)

reaching a plateau aM,=32). Contrary to the one- 0 500 1000 1500
dimensional model, however, now the system reaches a truly §

steady state, the d!Str'PUt'O” of immobile Islgnd_SIR{s) FIG. 4. (Color onling Histogram of size distribution of immo-
does not change with time as demonstrated in Fig. 4. bile islands for the multilane model with active jumps at different

Moreover, the distributiorP(s) is not Gaussian as in the times:(a) t=1C%, (b) t=10", and(c) t=10° [dashed red curve shows
1D model, but follows the power law: fall variants of the  the fit P(s)=6x 10* s732]. The parameters are=0.75,6=0.8, and
2D model as well as foall checked sets of the parameters  M,=M,=1024.
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FIG. 5. HistogramP(s) for the truly 2D model with active
jumps. The parameters are=0.95, #=0.8, Mx:My:512,t:103,
B=0.64.

two islandsk and s into one island of siz&k+s. Clearly,
R(k+s,s)=R(k+s,k) andT(k+s,s)=T(k+s,k).
Now we can write the master equation as follows:
AP(S) = Ppi(S) = P(s) = 2 Pk +9R(k +5,9)
k=1
s-1 s-1
~P(92 R(SK + 2 T(SKP(KP(s-K)
k=1 k=1

~P(9) X, T(s+kk)Py(K).
k=1

(6)

The first term in the right-hand side of E@) describes the
increase of the number of islands of sizdue to splitting of

higher-size islands, the second term describes the decreas
P;(s) due to splitting of thes island in two smaller parts, the

third term describes the growing of the numbersd§lands
due to coalescence of two smaller islakdsnds—k, and the
last term describes the decrease of the numbey isfands
due to their coalescence with other islands.

The steady state must satisfy the equathd®)(s)=0. It is

PHYSICAL REVIEW E71, 031111(2005
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FIG. 6. a,(s) as a function ofv for differents.

s-1
a(s) =— 1+, P(KP(s—k)/P(s) 9
k=1
and
b(s)= X RKP(K)/P(S). (10
k=st+1
Therefore the splitting rate has to have the form
R(s)=Ry/(s—1) fors>1 (11

provided the functioma(s) has a finite value at the—oo
limit, 0 <limg_., a(s)<o. Then, substituting Eq(1l) into

Eqg. (7), one can see that the latter has a solution in the

s> 1 limit only for the power-law distribution of island sizes,

P(s) =M v)s™, (12)

ev%ereg”(v) is the Riemann zeta function.

The substitution of the distributiofi2) into Eq.(9) yields
s-1

a 9 =-1+ (W2 k" (s-k™. (13
k=1

Numerical investigation of this function suggests that it has a

natural to suppose that the rate of coalescence does not dggnzero limit ats— « for one value of the exponentonly,
pend on the sizes of colliding island&(s,k) =T, for all sand  namely y~3/2, as demonstrated in Fig. 6. The same result
k. The splitting rateR(s,k), however, may depend on the follows from analytical consideration of the functidii3)
shape of the splitting island and thus it will depend on bothwith the help of Maple software, which shows that such a
argumentss andk. To simplify consideration, let us assume |imit exists for v=3/2 only, andag,(«) =1. Taking also into
that R(s,k) depends on the size of the island or(s,k)  account the simulation results such as presented in Fig. 5, we
~R(9). In this caseR(s) should behave a&(s)«(s-1)"*for  conclude that the power-law distributi¢h?) with the expo-
s>1. Indeed, substituting(s,k)=Ty andR(s,k)=R(s) into  nent »=3/2 is thetruly steady-state solution of the model
Eq. (6) for the steady state, we obtain under study.

Finally, the self-consistent solution of the steady-state dis-

el s-1
_ _ _ tribution is achieved with the parametelRy=CT,, where
PSS~ DR(S) + To] kzzsﬂ PUOR(9 + Tok% PRIP(S=K). C=3 is a numerical constant.
(7)
Equation(7) can be rewritten in the form B. Shape of jams
R(s) = [Tsa(s) + b(s)]/(s- 1), ®) Qualitatively, the dependence of the mobiliB/on the

model parametera and 6 is similar to that of the 1D model:

where B grows whena increases or wher decreases and it is
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(a) «=0.55 0=0.50 (multi—lane, active jumps)
e 1 e . e

=T SR R

500} Z ;

400}

300;

100

0 100 200 300 400 500

FIG. 7. Shape of jams. Snapshot configurations=di0® of the multilane model with active jumpiattice 512x 512) for different model
parameters(a) «=0.55, #=0.5,B~0.8; (b) «=0.75, #=0.8, B~0.6; and(c) «=0.95, #=0.9, B=0.7. Immobile atoms are in black and
running atoms in grey.

determined by6, through the expressiof®), although the y direction at smalle as shown in Fig. (@), approximately
simple expression3) and (4) are not valid for the 2D circular at intermediate values ef[see Fig. )], and elon-
model. At a small enough concentrati@r< 6., where the gated in thex direction (along the driving at large« [Fig.
critical valued, depends omr as well as on the variant of the 7(c)].

model, all atoms are in the running state @w1. Wheno An average size of jams depends on the system size be-
> 6, and the concentration increases, more and more immasause(s) ~ [dssRs) « sty (M,M,)Y2. Clearly, the maxi-

bile islands emerge in the sea of running atoms. As far amum sizes,, of the immobile island is determined by the
B>0.5, these islands are isolated, and their shape dependgstem size too. Indeed, in a finite system the total number of
on the “forcing” «: the immobile islands are elongated in the immobile atoms may be written adNsxP(1)+2P(2)
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+3P(3)+---+s,P(s,). If we suppose that there is only one ___(a
island with the maximum size, this relationship may be re- 500 2%
written asNg=s./2S3m 5712 and the latter yields,,~ 0.5N, :

for Ng>1.
As 6 increases, the concentration of immobile islands
grows, and at some critical concentratiég{«), which cor- 400

responds to the percolation threshold for the given variant of
the model, the jams begin to overlap. After that, the immo-
bile atoms are arranged either injeoriented strips[for
smaller values ofx, see Figs. &) and 9a)] or, at larger 300
values ofq, they create a two-dimensional net as shown in
Figs. 8b) and 9b).

C. Comparison of different variants of the model

Passive and active jump$he comparison of the mobility
of models with passive and active jumps is presented in Fig.
10. A trivial result is that active jumps lead to a higher mo- 100
bility. One can see also that the effect is stronger for the truly
2D model.

Multilane and truly 2D modelstet us also compare the ;
multilane and truly 2D modelg¢see Fig. 10 A surprising 0 R

result is that for all cases, except the one with active jumps a
low driving «=0.55, the mobility of the truly 2D model is (b) «=0.95 6=0.90 (multi-lane, passive jumps)
smaller than that of the multilane model. 500 DR s T e SR

2D and 1D modelsFinally, let us compare 2D variants of
the traffic-jam model with the simple 1D model described in
the Introduction. As seen from Fig. 11, the mobility of the
1D model is higher than that of 2D variants of the model for 4,
almost all model parameters.

Figure 12 presents the phase diagram of four variants of
the model. The curves separate the runriiBg1) and jam-
ming (B<1) states. 300

IV. DISCUSSION

To explain qualitatively the variation d&(6) for different 200
variants of the 2D model, let us look at some typical con-
figurations below the percolation threshdlthen B>0.5,
see Fig. 1B and above the percolatiofwhen B<0.5, see
Fig. 14). These configurations were calculated for the lattice 100
512x 512 andt=10%; the figures show a zoomed region of
size 96x 96 extracted from a larger configuration.

From a general point of view, the mobilifg of the 2D
model should be higher than that of the 1D model because °f
the atoms that collide with a jam may not stop but instead go
around the jam. At the same time, howevé&,may be FIG. 8. Snapshot configurationstat1®® of the multilane model
strongly decreased compared with the 1D model due to theith passive jumps for{a) «=0.55, #=0.7, B=0.37, and(b) «
spreading of jams in thg direction. The mobilityB can be  =0.95,6=0.9,B~0.35. Immobile atoms are in black and running
expressed through the concentration of the running at@ms atoms in grey.
with the help of Eq.2). Using the simulation data, we can
plot ¢, as a function o# for different values of the parameter
« (see Fig. 15 In what follows we will try to give a crude seen from Fig. 13. Let(s) be an average rate of atomic
qualitative description of thé,(«, ) dependence. We will jumps from the right-hand-side boundary of the immobile
do this separately for the case of high mobility when theisland of sizes, provided the corresponding site is not occu-
immobile islands do not overlap, and the case of low mobil-pied by a running atom. We haves) = o= a;+ as,+ ayq for
ity, i.e., above the percolation of the islands. s~1 as well as for immobile islands strongly elongated in

The case of high mobilityB>0.5). In this simpler case thex direction, anda(s) = a;+ 0.5 a4, + asg) for s>1 or for
the immobile islands are separated from each other as can Iands strongly elongated in the direction (e.g., for the

100 200 300 400 500
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(@) a=0.55 0=0.70 (truly-2D, active jumps)
500 ol oeer SRR e
5 T
: - 4
u
400 [
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e
Lt G
¥,
R, T
200 |-
g* L3
100 =%
F

0 100

(b) a=0.95 6=0.90 (truly—2D, active jumps)
s il et Wi Wbichiriettiotl’ e i 8

0 100 200 300 500
FIG. 9. Snapshot configurationstat1(® of the truly 2D model
with active jumps for:(a) «=0.55, =0.7, B=0.57, and(b) «

=0.95, #=0.9,B~0.26. Immobile atoms are in black and running
atoms in grey.

case of a flat vertical boundaryThe jump’s rate averaged
over the whole system may be defined as

— P()a(1) + -+ +P(sp)a(sn)
a= . (14)
P(1)+ -+ +P(sy)
If we assume that the dependenge) may be described
by the following interpolation formula:
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FIG. 10. The mobilityB versus the concentratiahfor (a) mul-
tilane and(b) truly 2D models with passive jump@lotted curves
and open symbo)sand active jumpssolid curves and symbal$or
three values of the drivinga=0.55 (up triangle$, «=0.75 (dia-
mondsg, and «=0.95 (down triangles Lattice size is 25& 256,
and averaging is over $0MC steps per atom.

a(s) = ap + 0.5 ag, + azg) (1 +579),

where 0<é<w is a parameter, thea=a;+[1+G(&)]ay,,
where G(0)=1, G(1)={(5/2)/¢(3/2)=0.514, G(2)
=¢(712)1¢(3/2)=0.431, andG(«)=1/{(3/2)~0.383. Be-
cause these values do not depend essentially on the exponent
& providedé=1, we may take in what followg=2 so that

Ez G{f"‘ 1.4&[’“].

In the 1D model described in the Introduction, the site
ahead of the right-most atom of the jam was always empty,
thus the jam is shortened from its right-hand side at the rate
g=a. This is not true anymore for the 2D model: as can be
seen from Fig. 13, some sites ahead of the right-hand bound-
ary of the 2D jams are occupied by running atoms with some
nonzero probabilityd’. Thus in the 2D model the jam will
shorten from its right-hand boundary at the rajea(1
—#'). Then, letl be a linear size of the immobile island in the
y direction from its left-hand sidé.e., | is the average jam’s
“cross section” for the incoming running atomsand|; be
the (fractal) length of the island boundary from its right-hand
side. The rate of growth of the jaifirom its left-hand-side
boundary is 6,1 while the rate of its decreagfrom the right-
hand-side boundayys gl;. In the steady state these two rates
must be equal to each other on the average. Thus we come to
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a=0.55(up triangles and dash curyea=0.75(diamonds and dot-
ted curvey and @=0.95(down triangles and solid curved attice

size is 256< 256, and averaging is over 4MC steps per atom.

FIG. 13. Snapshot configuration of the truly 2D model with

passive jumps fow=0.75 and§=0.6 (B~0.71). Immobile atoms

are in black and running atoms in grey.

the expressio,=aQ, whereQ=(1-6"){I;)/(I).

The valuea is shown in Fig. 15 by a dashed line. One can
see that the approach presented above describes the sim
tion data for the multilane model with passive jumpséat
= 6, if we take Q=0.91-0.96. Although this value is rea-
sonable, unfortunately we were not able to fi@danalyti-

cally. A lower mobility of the truly 2D model compared with
the multilane one could be explained by a lower value of the
ratio (I;)/{I). On the other hand, a higher mobility of the
models with active jumps compared with those with passive
jumps can be easily explained by the decrease of the cros

section: In the model with active jumps the parame@er

should be defined a®=(1-6'){l;)/{l-2) because the “ex-

1.0

140
s j'
AAA “A“‘A e - o= truly-2D,  passive jumps 120
Foax e - - truly-2D, active jumps
"M 72 --- & - multi-lanc ivej
A , passive jumps
L R --- &-- multi-lane, active jumps
0.5l -t : * ;
0.5 1.0

0 100

FIG. 12. Phase diagram in tiié, «) plane. The curves separate
the regions wherd8=1 (moving phase, above the curyemnd B

<1 (jamming phase, below the curyesattice size is 25& 256,
and simulation time is TOMC steps per atom.
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reme” up/down running atoms colliding with the jam can

@w overcome it. As can be seen from Fig. 16, in the models
with active jumps the concentration of running atoms in-

creases by 1.1-1.3 times.
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FIG. 14. Snapshot configuration of the truly 2D model with

passive jumps fow=0.75 andd#=0.8 (B=0.27). Immobile atoms
are in black and running atoms in grey.
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The value 6, determined above just defines the critical
value 6, which separates the running and jamming states in
the phase diagram of Fig. 12. Above this concentration,
0> 6, we may writeNg=~ (60— ;)M = 2s;,,. In this approach,
however, the value of), does not depend oA while the
simulation results of Fig. 15 show a slow increaseofvith
6 in the regiond. < < 6,. To explain this effect, one may
suppose thatd, =a(s,)Q(s,), where a(s,) decreases but
Q(sy) increases whem grows, and the latter effect domi-
nates. Besides, we also have to take into account the fact that
since immobile islands are not compact, there are small sub-
islands of running atoms inside the immobile islands as can
be seen, e.g., in the configuration of Fig. 13. The concentra-
tion 6, in these subislands is larger than that in the “main
sea” of running atoms. Thus the average valge is larger
than 6, in the “sea,” and6,) should increase witl# due to
the growing of immobile islands.

The case of low mobilityB<0.5). As mentioned above,
the overlapping of immobile islands begins whegM =y
<0.5 (recall M=M,M,), where the percolation threshoid
depends on the shape of islands in a general case. Above the
percolation, the running atoms are organized into isolated
islands as can be seen from Fig. 14. At higher concentrations,
0> 6, the value off) begins to decrease #sincreases and,
because the average radius of the running islands decreases,
a has to decrease too. Using the relationshiagM =(6
-6,)/(1-6,) and s,,=0.5N,, we obtain the result that the
threshold valuedy,(a) is coupled with the concentration of
the running atomsy, by the relationship 2=(6,-6,)/(1

- 6,). If we define the value of), as that wherg, reaches its
maximum, from the simulation data for the multilane model
Eﬁlth passive jumps we find that=0.25 ata=0.55 (when

e island arg shapeg, y=0.2 ata=0.75(when the islands
are approximately circularandy=<0.1 ata=0.95(when the
island arex elongategl These results look reasonable if we
assume that the percolation in the driving direction is impor-
tant only.

V. CONCLUSION

We have studied numerically and, whenever possible,
analytically a two-dimensional two-state lattice-gas model
which demonstrates a typical behavior of traffic jams, i.e.,
the steady state of the system is splitting into domains of
immobile atomsjamg and running atoms. Four variants of
the 2D model, namely the multilane and truly 2D models
with passive and active atomic jumps, show a similar behav-
ior. Contrary to the 1D variant of the model, the 2D model is
characterized by a truly steady state with a power law distri-
bution of jam sizes characterized by a universal exponent
3/2. The phase diagram of the model shows that the mobility
of the 2D system is lower than the mobility of the 1D model
due to a branching behavior of jams.

The lattice-gas model studied in the present work should
describe qualitatively the locked-to-sliding transition in the
driven underdamped Frenkel-Kontorova model. Such a tran-
sition, according to the results of our study, should proceed
through an inhomogeneous steady state, where the system
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splits into immobile and running domains. Preliminary re-supported by the NATO Collaborative Linkage Grant
sults show that this indeed is the case at least for some randgST.CGL.980044.

of model parameterf24,25,27. Therefore the results of the

present work may find applications in problems of conduc- APPENDIX

tivity of 2D systems or behavior of tribology systems as was

mentioned in the Introduction. Besides, the model studied in  The diffusion equatiowP(s,t)/at=¢P(s,t)/3s* with the
the present work may be used to describe granular flow, e.gabsorbing boundary conditioR(0,t)=0 ats=0 has the so-
grain, corn, or pills flow on inclined hopper surfad@§] or  lution

in a vertical pipe. Finally, the two-state LG model may be w0

useful in investigation of general aspects of “intelligent p(s,t)zj a(k)sin(ks)exp(— k2t)dk,

transport systems” such as multilane traffic, can and bottle 0

transport systems in factories, baggage flow on conveyor . _ I C
belts,pdata )(/axchange in computer r?gtv\?orks, and even erze“r"—here a(k) is determined by the initial distributiora(k)

gency escaping in case of crowds of people. =(2/m) [y sin(ks)P(s,0)ds Fort>1 ands>1 this distribu-
tion approaches the Gaussian one. For example, for the ini-
ACKNOWLEDGMENTS tial distribution P(s, 0)=s exp(-s?) which has a maximum at

s~1, the exact solution of the diffusion equation is
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